organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(1R,2S)-[(R)-1-(2-Hydroxynaphthalen-1yl)naphthalen-2-yl] 2-ethynylcyclopropane-1-carboxylate

Jinlong Fan and Zhaohai Qin*

College of Science, China Agricultural University, 100094 Beijing, People's Republic of China

Correspondence e-mail: ginzhaohai@263.net

Received 1 November 2010; accepted 29 March 2011

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.002 Å; R factor = 0.032; wR factor = 0.074; data-to-parameter ratio = 13.6.

In the crystal structure of the title compound, $C_{26}H_{18}O_3$, molecules with stereochemistry (1R, 2S, R), are connected by O−H···O hydrogen bonds, forming chains.

Related literature

The title structure is a stable cyclopropane formate ester intermediate in the synthesis of abscisic acid analogues. (1S)-(+)-Abscisic acid is an important phytohormone with many functions in higher plants including roles in seed germination, development and dormancy, regulating the stomatal movements and improving stress tolerance, see: Frey et al. (1999); Jiang & Zhang (2004). For the synthesis of cyclopropane formate ester, see: Reichelt & Martin (2006); Boche & Lohrenz (2001); Lebel et al. (2003); Molander & Etter (1987).

Experimental

Crystal data

C26H18O3 $M_r = 378.40$ Orthorhombic, $P2_12_12_1$ a = 8.0376 (11) Åb = 12.0600 (17) Å c = 20.324 (3) Å

Data collection

Rigaku R-AXIS RAPID IP areadetector diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 2001) $T_{\min} = 0.673, T_{\max} = 0.801$

Refinement

O1-

$R[F^2 > 2\sigma(F^2)] = 0.032$	$\Delta \rho_{\rm max} = 0.11 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.074$	$\Delta \rho_{\rm min} = -0.13 \text{ e } \text{\AA}^{-3}$
S = 1.07	Absolute structure: Flack (1983),
3554 reflections	1471 Friedel pairs
262 parameters	Flack parameter: -0.06 (19)
H-atom parameters constrained	

V = 1970.1 (5) Å³

Cu Ka radiation

 $0.65 \times 0.48 \times 0.35 \text{ mm}$

13939 measured reflections

3554 independent reflections

3391 reflections with $I > 2\sigma(I)$

 $\mu = 0.66 \text{ mm}^{-1}$

T = 173 K

 $R_{\rm int}=0.032$

Z = 4

Table 1 Hydrogen-bond geometry (Å, °).

D-

$H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$-H1A\cdots O3^{i}$	0.84	2.01	2.8520 (16)	177

Symmetry code: (i) x + 1, y, z.

Data collection: RAPID-AUTO (Rigaku 1998); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

This work was supported by the Natural Science Foundation of China (No. 20972184)

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GW2095).

References

- Boche, G. & Lohrenz, J. C. W. (2001). Chem. Rev. 101, 697-756.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Frey, A., Audran, C., Marin, E., Sotta, B. & Marion-Poll, A. (1999). Plant Mol. Biol. 39, 1267-1274.
- Higashi, T. (2001). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Jiang, M. Y. & Zhang, J. H. (2004). Acta Bot. Sin. 46, 1-9.
- Lebel, H., Marcoux, J. F., Molinaro, C. & Charette, A. B. (2003). Chem. Rev. 103, 977-1050.
- Molander, G. A. & Etter, J. B. (1987). J. Org. Chem. 52, 3942-3944.
- Reichelt, A. & Martin, S. F. (2006). Acc. Chem. Res. 39, 433-442.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2011). E67, o1342 [doi:10.1107/S1600536811011627]

$(1R,2S)-[(R)-1-(2-Hydroxynaphthalen-1-yl)naphthalen-2-yl]\ 2-ethynylcyclopropane-1-carboxylate$

J. L. Fan and Z. H Qin

Comment

(1S)-(+)-Abscisic acid (ABA) is an important phytohormone with many functions in higher plants including roles in seed germination, development and dormancy, regulating the stomatal movements and improving stress tolerance (Frey *et al.*, 1999; Jiang *et al.*, 2004). The title structure, C₂₆H₁₈O₃, is a stable cyclopropane formate ester intermediate in the synthesis of Abscisic acid analoge. During the course of our study, we remove the protected group, trimethanesilicon, from the compound of (1*R*,2S)-((*R*)-2'-hydroxy-1,1'-binaphthyl-2-yl) 2-((trimethylsilyl)ethynyl)cyclopropanecarboxylate, to obtain the title compound. In this paper, we reported crystal structure of the title compound.

The crystal structure is shown in Figure 1. The crystal structure consists of one three-membered rings(A) and two naphthalene nucleus(B/C). The C22 is *R* configuration with the dihedral angles C22—C23—C24—C25 = 109.07 (51)°. The C24 is S configuration with the dihedral angles C21—C22—C24—C23 = 108.01 (53)°. The two naphthalene nucleus(B/C) is *R* configuration with the dihedral angles C(1)—C(10)—C(11)—C(20) = 92.85 (07)°. the compounds are connected by O1—H1A···O3i,hydrogen bonds (2.852, Symmetry code: (i) x + 1, y, z.).

Experimental

A solution of (1R,2S)-((R)-2'-hydroxy-1,1'-binaphthyl-2-yl) 2-((trimethylsilyl)ethynyl)cyclopropanecarboxylate (360 mg, 0.775 mmol) was cooled to 0 °C, and TBAF (1.0 *M* THF solution, 1.16 ml, 1.16 mmol) was added. The resulting solution was stirred for 3 h at 0 °C. Saturated NH4Cl solution was added, and the aqueous phase was extracted with Et₂O. The organic phase was washed with brine, dried over Na₂SO₄, filtered, and concentrated. The residue was purified by column chromatography on silica gel (1:1 hexane/benzene) to provide 23*a* (229.4 mg, 78.3%). 1H NMR (500 MHz, CDCl₃,TMS): δ 0.9566–1.1.0282 (m,1H), 1.0925 - 1.1524(m, 1H), 1.6355–1.7887 (m, 2 H), 1.9454–1.9527 (d, 1 H), 5.3893 (s, 1 H), 7.0617–7.0659(q,1 H), 7.2167–7.3231 (m, 6H), 7.4202–7.4686(q, 2 H), 7.8104–7.9397 (ddd,3H), 8.0015–8.0309(d, 1 H); 13 C NMR (75 MHz, CDCl₃): δ 10.027, 14.828, 20.324, 29.639, 68.373, 80.191, 114.146, 118.643, 121.931, 123.372, 124.595, 125.744, 126.186, 126.542, 127.313, 127.910, 128.984, 130.116, 130.545, 132.182, 133.450, 133.577. The compound was redissolved in n-hexane (20 ml) and dichloromethane (5 ml), and crystals suitable for X-ray analysis were grown from slow evaporation of the solvent at room temperature.

Refinement

H atoms on C were placed in idealized positions with C—H distances 0.95 - 0.99 Å and thereafter treated as riding. U_{iso} for H were assigned as 1.2 times U_{eq} of the attached C atom. The result of refinement is $R[F^2 > 2\sigma(F^2)] = 0.032$, $wR(F^2) = 0.074$, Flack parameter: -0.06 (19), so the absolute configuration can be determined.

Figures

$(1R,2S)-[(R)-1-(2-hydroxynaphthalen-1-yl)naphthalen-2-yl]\ 2-ethynylcyclopropane-1-carboxylate$

Crystal data

$C_{26}H_{18}O_3$	F(000) = 792
$M_r = 378.40$	$D_{\rm x} = 1.276 {\rm ~Mg~m}^{-3}$
Orthorhombic, $P2_12_12_1$	Cu K α radiation, $\lambda = 1.54186$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 14013 reflections
a = 8.0376 (11) Å	$\theta = 3.1 - 68.2^{\circ}$
b = 12.0600 (17) Å	$\mu = 0.66 \text{ mm}^{-1}$
c = 20.324 (3) Å	<i>T</i> = 173 K
$V = 1970.1 (5) \text{ Å}^3$	Block, colorless
Z = 4	$0.65 \times 0.48 \times 0.35 \text{ mm}$

Data collection

Rigaku R-AXIS RAPID IP area-detector diffractometer	3554 independent reflections
Radiation source: rotating anode	3391 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.032$
ω scans	$\theta_{\text{max}} = 68.2^{\circ}, \ \theta_{\text{min}} = 4.3^{\circ}$
Absorption correction: multi-scan (<i>ABSCOR</i> ; Higashi, 2001)	$h = -9 \rightarrow 9$
$T_{\min} = 0.673, T_{\max} = 0.801$	$k = -12 \rightarrow 14$
13939 measured reflections	$l = -24 \rightarrow 24$

Refinement

Refinement on F^2

Secondary atom site location: difference Fourier map

Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.032$	H-atom parameters constrained
$wR(F^2) = 0.074$	$w = 1/[\sigma^2(F_o^2) + (0.0274P)^2 + 0.3717P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.07	$(\Delta/\sigma)_{\rm max} = 0.001$
3554 reflections	$\Delta \rho_{max} = 0.11 \text{ e} \text{ Å}^{-3}$
262 parameters	$\Delta \rho_{min} = -0.13 \text{ e } \text{\AA}^{-3}$
0 restraints	Absolute structure: Flack (1983), 1471 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: -0.06 (19)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.82773 (14)	0.36744 (9)	0.81560 (6)	0.0412 (3)
H1A	0.9241	0.3840	0.8030	0.062*
O2	0.41585 (13)	0.38707 (9)	0.74612 (5)	0.0360 (3)
O3	0.15312 (14)	0.43096 (11)	0.77423 (6)	0.0443 (3)
C1	0.75354 (19)	0.45851 (13)	0.84229 (7)	0.0294 (3)
C2	0.84313 (19)	0.55862 (13)	0.85081 (8)	0.0326 (3)
H2A	0.9556	0.5632	0.8367	0.039*
C3	0.7695 (2)	0.64824 (13)	0.87909 (7)	0.0329 (4)
H3A	0.8313	0.7147	0.8847	0.039*
C4	0.6014 (2)	0.64350 (13)	0.90027 (7)	0.0306 (3)
C5	0.5215 (2)	0.73583 (14)	0.92935 (8)	0.0374 (4)
H5A	0.5808	0.8035	0.9340	0.045*
C6	0.3614 (2)	0.72960 (14)	0.95074 (8)	0.0415 (4)
H6A	0.3103	0.7920	0.9709	0.050*
C7	0.2721 (2)	0.63017 (15)	0.94282 (8)	0.0402 (4)
H7A	0.1599	0.6260	0.9573	0.048*
C8	0.3447 (2)	0.53947 (14)	0.91456 (8)	0.0350 (4)
H8A	0.2821	0.4732	0.9097	0.042*
C9	0.51197 (19)	0.54257 (12)	0.89239 (7)	0.0280 (3)
C10	0.59105 (18)	0.44935 (12)	0.86295 (7)	0.0270 (3)
C11	0.50195 (18)	0.34074 (12)	0.85607 (7)	0.0279 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C12	0.4190 (2)	0.31262 (13)	0.79970 (7)	0.0319 (3)
C13	0.3400 (2)	0.21003 (15)	0.79066 (8)	0.0419 (4)
H13A	0.2861	0.1937	0.7502	0.050*
C14	0.3408 (2)	0.13429 (14)	0.83998 (9)	0.0406 (4)
H14A	0.2880	0.0646	0.8338	0.049*
C15	0.4194 (2)	0.15809 (13)	0.90047 (8)	0.0341 (4)
C16	0.4193 (2)	0.08122 (14)	0.95328 (9)	0.0411 (4)
H16A	0.3670	0.0112	0.9477	0.049*
C17	0.4927 (2)	0.10604 (15)	1.01160 (10)	0.0460 (4)
H17A	0.4917	0.0534	1.0463	0.055*
C18	0.5704 (2)	0.20966 (16)	1.02082 (9)	0.0460 (4)
H18A	0.6197	0.2271	1.0620	0.055*
C19	0.5753 (2)	0.28568 (15)	0.97044 (8)	0.0363 (4)
H19A	0.6297	0.3548	0.9770	0.044*
C20	0.50037 (19)	0.26228 (13)	0.90897 (7)	0.0296 (3)
C21	0.2672 (2)	0.43827 (14)	0.73624 (8)	0.0355 (4)
C22	0.2674 (2)	0.49921 (16)	0.67393 (9)	0.0469 (4)
H22A	0.3780	0.5094	0.6522	0.056*
C23	0.1432 (3)	0.59106 (16)	0.66459 (12)	0.0627 (6)
H23A	0.0669	0.6075	0.7016	0.075*
H23B	0.1790	0.6568	0.6391	0.075*
C24	0.1168 (2)	0.48554 (16)	0.62786 (9)	0.0482 (5)
H24A	0.1427	0.4888	0.5798	0.058*
C25	-0.0173 (2)	0.41205 (15)	0.64584 (9)	0.0424 (4)
C26	-0.1269 (3)	0.35242 (17)	0.66089 (10)	0.0527 (5)
H26	-0.2153	0.3043	0.6730	0.063*

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U ³³	U^{12}	<i>U</i> ¹³	U^{23}
01	0.0302 (6)	0.0372 (6)	0.0561 (7)	-0.0033 (5)	0.0157 (5)	-0.0033 (6)
O2	0.0278 (6)	0.0474 (7)	0.0327 (5)	-0.0075 (5)	0.0028 (5)	0.0014 (5)
O3	0.0312 (6)	0.0593 (8)	0.0424 (6)	-0.0025 (6)	0.0080 (5)	0.0005 (6)
C1	0.0271 (8)	0.0314 (8)	0.0295 (7)	-0.0030 (6)	0.0028 (6)	0.0018 (6)
C2	0.0255 (8)	0.0375 (9)	0.0348 (8)	-0.0076 (7)	-0.0016 (6)	0.0075 (7)
C3	0.0351 (9)	0.0309 (8)	0.0326 (8)	-0.0127 (7)	-0.0058 (7)	0.0051 (7)
C4	0.0351 (9)	0.0284 (8)	0.0283 (7)	-0.0050(7)	-0.0044 (6)	0.0023 (6)
C5	0.0478 (11)	0.0284 (8)	0.0360 (8)	-0.0054 (7)	-0.0053 (7)	-0.0035 (7)
C6	0.0493 (11)	0.0341 (9)	0.0410 (9)	0.0048 (8)	0.0017 (8)	-0.0082 (8)
C7	0.0348 (9)	0.0434 (10)	0.0426 (9)	0.0005 (8)	0.0057 (7)	-0.0074 (8)
C8	0.0319 (8)	0.0348 (9)	0.0384 (8)	-0.0041 (7)	0.0026 (7)	-0.0075 (7)
C9	0.0282 (7)	0.0293 (8)	0.0265 (7)	-0.0046 (6)	-0.0021 (6)	0.0001 (6)
C10	0.0246 (7)	0.0278 (8)	0.0284 (7)	-0.0051 (6)	-0.0003 (6)	0.0008 (6)
C11	0.0212 (7)	0.0294 (8)	0.0330 (8)	-0.0031 (6)	0.0055 (6)	-0.0057 (6)
C12	0.0268 (8)	0.0353 (8)	0.0336 (8)	-0.0046 (7)	0.0062 (6)	-0.0031 (7)
C13	0.0388 (10)	0.0458 (10)	0.0411 (9)	-0.0132 (8)	0.0013 (7)	-0.0116 (8)
C14	0.0368 (9)	0.0315 (9)	0.0536 (10)	-0.0108 (7)	0.0050 (8)	-0.0121 (8)
C15	0.0264 (8)	0.0299 (8)	0.0458 (9)	0.0004 (7)	0.0098 (7)	-0.0029(7)

C16	0.0326 (9)	0.0274 (8)	0.0633 (11)	0.0020 (7)	0.0120 (8)	0.0060 (8)
C17	0.0343 (9)	0.0432 (10)	0.0604 (11)	0.0055 (8)	0.0063 (9)	0.0200 (9)
C18	0.0352 (9)	0.0567 (11)	0.0461 (10)	-0.0030 (9)	-0.0038 (8)	0.0114 (9)
C19	0.0289 (8)	0.0394 (9)	0.0405 (9)	-0.0038 (7)	-0.0004 (7)	0.0037 (7)
C20	0.0219 (8)	0.0285 (8)	0.0385 (8)	-0.0010 (6)	0.0056 (6)	-0.0024 (6)
C21	0.0280 (8)	0.0412 (10)	0.0374 (8)	-0.0076 (7)	0.0006 (7)	-0.0033 (7)
C22	0.0373 (10)	0.0528 (11)	0.0505 (10)	-0.0067 (8)	0.0051 (8)	0.0117 (9)
C23	0.0663 (14)	0.0381 (10)	0.0838 (15)	-0.0042 (10)	0.0040 (12)	0.0158 (11)
C24	0.0474 (11)	0.0546 (12)	0.0426 (9)	0.0085 (9)	0.0007 (8)	0.0120 (9)
C25	0.0414 (10)	0.0404 (10)	0.0452 (10)	0.0136 (8)	-0.0111 (8)	-0.0059 (8)
C26	0.0463 (12)	0.0469 (11)	0.0649 (12)	-0.0016 (9)	-0.0109 (9)	-0.0083 (10)

Geometric parameters (Å, °)

O1—C1	1.3623 (18)	C13—C14	1.356 (2)
O1—H1A	0.8400	С13—Н13А	0.9500
O2—C21	1.3596 (19)	C14—C15	1.412 (2)
O2—C12	1.4116 (18)	C14—H14A	0.9500
O3—C21	1.2021 (19)	C15—C16	1.418 (2)
C1—C10	1.376 (2)	C15—C20	1.426 (2)
C1—C2	1.416 (2)	C16—C17	1.357 (3)
C2—C3	1.360 (2)	C16—H16A	0.9500
C2—H2A	0.9500	C17—C18	1.410 (3)
C3—C4	1.419 (2)	C17—H17A	0.9500
С3—НЗА	0.9500	C18—C19	1.375 (2)
C4—C5	1.415 (2)	C18—H18A	0.9500
C4—C9	1.423 (2)	C19—C20	1.415 (2)
C5—C6	1.360 (3)	С19—Н19А	0.9500
С5—Н5А	0.9500	C21—C22	1.464 (2)
C6—C7	1.407 (2)	C22—C23	1.503 (3)
С6—Н6А	0.9500	C22—C24	1.539 (3)
С7—С8	1.366 (2)	C22—H22A	1.0000
С7—Н7А	0.9500	C23—C24	1.491 (3)
C8—C9	1.418 (2)	С23—Н23А	0.9900
C8—H8A	0.9500	С23—Н23В	0.9900
C9—C10	1.423 (2)	C24—C25	1.442 (3)
C10—C11	1.4994 (19)	C24—H24A	1.0000
C11—C12	1.368 (2)	C25—C26	1.178 (3)
C11—C20	1.432 (2)	С26—Н26	0.9500
C12—C13	1.403 (2)		
C1—O1—H1A	109.5	C15—C14—H14A	119.7
C21—O2—C12	114.75 (12)	C14—C15—C16	121.74 (15)
O1—C1—C10	118.17 (13)	C14—C15—C20	119.28 (15)
O1—C1—C2	120.89 (13)	C16—C15—C20	118.98 (15)
C10—C1—C2	120.90 (14)	C17—C16—C15	121.09 (16)
C3—C2—C1	120.53 (14)	C17—C16—H16A	119.5
C3—C2—H2A	119.7	C15-C16-H16A	119.5
C1—C2—H2A	119.7	C16—C17—C18	120.29 (17)
C2—C3—C4	120.70 (14)	C16—C17—H17A	119.9

С2—С3—НЗА	119.6	C18—C17—H17A	119.9
С4—С3—НЗА	119.6	C19—C18—C17	120.31 (17)
C5—C4—C3	121.82 (15)	C19—C18—H18A	119.8
C5—C4—C9	119.42 (14)	C17—C18—H18A	119.8
C3—C4—C9	118.77 (14)	C18—C19—C20	120.81 (15)
C6—C5—C4	121.29 (15)	С18—С19—Н19А	119.6
С6—С5—Н5А	119.4	С20—С19—Н19А	119.6
С4—С5—Н5А	119.4	C19—C20—C15	118.50 (14)
C5—C6—C7	119.55 (16)	C19—C20—C11	121.81 (13)
С5—С6—Н6А	120.2	C15—C20—C11	119.69 (14)
С7—С6—Н6А	120.2	O3—C21—O2	122.84 (15)
C8—C7—C6	120.84 (16)	O3—C21—C22	126.36 (16)
С8—С7—Н7А	119.6	O2—C21—C22	110.79 (14)
С6—С7—Н7А	119.6	C21—C22—C23	118.58 (17)
С7—С8—С9	121.15 (15)	C21—C22—C24	118.15 (15)
С7—С8—Н8А	119.4	C23—C22—C24	58.66 (13)
С9—С8—Н8А	119.4	C21—C22—H22A	116.4
C8—C9—C4	117.75 (14)	С23—С22—Н22А	116.4
C8—C9—C10	122.41 (14)	C24—C22—H22A	116.4
C4—C9—C10	119.84 (13)	C24—C23—C22	61.87 (13)
C1—C10—C9	119.25 (13)	C24—C23—H23A	117.6
C1—C10—C11	119.66 (13)	С22—С23—Н23А	117.6
C9—C10—C11	121.06 (12)	С24—С23—Н23В	117.6
C12—C11—C20	117.42 (13)	С22—С23—Н23В	117.6
C12—C11—C10	121.83 (13)	H23A—C23—H23B	114.7
C20—C11—C10	120.75 (13)	C25—C24—C23	120.26 (17)
C11—C12—C13	123.30 (15)	C25—C24—C22	119.94 (15)
C11—C12—O2	119.81 (13)	C23—C24—C22	59.47 (13)
C13—C12—O2	116.85 (14)	C25—C24—H24A	115.3
C14—C13—C12	119.67 (15)	C23—C24—H24A	115.3
C14-C13-H13A	120.2	C22—C24—H24A	115.3
C12—C13—H13A	120.2	C26—C25—C24	179.6 (2)
C13—C14—C15	120.59 (15)	С25—С26—Н26	180.0
C13—C14—H14A	119.7		
O1—C1—C2—C3	-178.23 (13)	C11—C12—C13—C14	1.5 (3)
C10-C1-C2-C3	-0.6 (2)	O2-C12-C13-C14	179.06 (15)
C1—C2—C3—C4	-0.4 (2)	C12-C13-C14-C15	0.5 (3)
C2—C3—C4—C5	-179.49 (15)	C13-C14-C15-C16	178.77 (16)
C2—C3—C4—C9	1.1 (2)	C13-C14-C15-C20	-0.9 (2)
C3—C4—C5—C6	-178.58 (15)	C14—C15—C16—C17	-178.77 (16)
C9—C4—C5—C6	0.9 (2)	C20-C15-C16-C17	0.9 (2)
C4—C5—C6—C7	-1.1 (2)	C15—C16—C17—C18	0.2 (3)
C5—C6—C7—C8	0.7 (3)	C16—C17—C18—C19	-1.2 (3)
C6—C7—C8—C9	0.0 (3)	C17-C18-C19-C20	1.1 (2)
C7—C8—C9—C4	-0.3 (2)	C18—C19—C20—C15	0.1 (2)
C7—C8—C9—C10	179.83 (15)	C18—C19—C20—C11	179.15 (15)
C5—C4—C9—C8	-0.1 (2)	C14—C15—C20—C19	178.64 (15)
C3—C4—C9—C8	179.33 (14)	C16—C15—C20—C19	-1.1 (2)
C5—C4—C9—C10	179.75 (13)	C14—C15—C20—C11	-0.4 (2)

C3—C4—C9—C10	-0.8 (2)	C16-C15-C20-C11	179.84 (14)
O1—C1—C10—C9	178.55 (13)	C12-C11-C20-C19	-176.82 (15)
C2-C1-C10-C9	0.9 (2)	C10-C11-C20-C19	3.0 (2)
O1-C1-C10-C11	0.4 (2)	C12-C11-C20-C15	2.2 (2)
C2-C1-C10-C11	-177.20 (14)	C10-C11-C20-C15	-177.97 (13)
C8—C9—C10—C1	179.69 (14)	C12—O2—C21—O3	8.2 (2)
C4—C9—C10—C1	-0.2 (2)	C12—O2—C21—C22	-170.69 (13)
C8—C9—C10—C11	-2.2 (2)	O3—C21—C22—C23	22.1 (3)
C4—C9—C10—C11	177.90 (13)	O2—C21—C22—C23	-159.11 (16)
C1-C10-C11-C12	-87.34 (18)	O3—C21—C22—C24	-45.6 (3)
C9-C10-C11-C12	94.59 (18)	O2—C21—C22—C24	133.24 (16)
C1-C10-C11-C20	92.87 (17)	C21—C22—C23—C24	-107.30 (19)
C9—C10—C11—C20	-85.20 (17)	C22—C23—C24—C25	109.08 (18)
C20-C11-C12-C13	-2.8 (2)	C21—C22—C24—C25	-1.6 (3)
C10-C11-C12-C13	177.41 (15)	C23—C22—C24—C25	-109.6 (2)
C20—C11—C12—O2	179.69 (12)	C21—C22—C24—C23	108.0 (2)
C10-C11-C12-O2	-0.1 (2)	C23—C24—C25—C26	-13 (38)
C21—O2—C12—C11	-107.04 (16)	C22—C24—C25—C26	57 (38)
C21—O2—C12—C13	75.28 (18)		

Hydrogen-bond geometry (Å, °)

D—H··· A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!-\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
O1—H1A···O3 ⁱ	0.84	2.01	2.8520 (16)	177.
Symmetry codes: (i) $x+1$, y , z .				

